Description
给出整数$n,k$,计算$G(n,k)=\sum\limits_{i=1}^n=k \ mod \ i$,$1<=n,k<=1e9$
Solution
将k mod i展开可以得到$k - i*\lfloor \frac{k}{i} \rfloor$
将求和式子展开可以得到$ \sum\limits_{i=1}^n = nk-\sum\limits_{i=1}^n i * \lfloor\frac{k}{i} \rfloor $
利用整除分块,可以发现,对于相同的$\lfloor\frac{k}{i} \rfloor$,即每个区间$l 到 r$,每次只需要再对i求和即可
即每次计算$(r-l+1)\lfloor \frac{k}{i} \rfloor * (l+r)/2$
Note
在分块的时候误写为r=N/(N/i)
导致调试耽误大量时间,而且交了四发才发现
1
2
3
4
5
6
7
|
for (ll l = 1, r; l <= N; l = r + 1) {
if (l > K) {
break;
}
r = min(N, K/(K/l));
ans -= (r - l + 1)*(K/l)*(l + r)/2;
}
|
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
//https://www.luogu.com.cn/problem/P2261
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <queue>
#include <cmath>
#include <map>
#include <set>
#define mem(a,b) memset(a,b,sizeof(a))
#define debug cout<<0<<endl
#define ll long long
const int MAXN = 1e2 + 10;
const int MOD = 1e9 + 7;
using namespace std;
ll ans = 0;
void solve(ll N, ll K) {
ans = N*K;
for (ll l = 1, r; l <= N; l = r + 1) {
if (l > K) {
break;
}
r = min(N, K/(K/l));
ans -= (r - l + 1)*(K/l)*(l + r)/2;
}
cout << ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
ll N, K; cin >> N >> K;
solve(N, K);
return 0;
}
|